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Measuring Seasonality

3.1 Introduction

Public health measures aim to improve the health of the people. For that pur-
pose, it is an absolute necessity to discover the origins of diseases. If diseases,
and ultimately mortality, occur seasonally, “an environmental factor has to
be considered in the etiology of that disease” [244, p. 275]. An enormous
diversity of causes of death has been related to seasonal incidence: cardiovas-
cular diseases [420], asthma [40], infectious diseases [260], diarrhea and cholera
[31, 391], suicide [139], and congenital malformations [90, 184] to name only
a few.

The aim of this chapter is to present the methods that have been sug-
gested and/or employed in the literature and to discuss their advantages and
disadvantages by using hypothetical and real data. From a methodological
point of view, one can basically distinguish between two categories of studies.
On the one hand, studies that test for the existence of seasonal trends and,
on the other hand, studies that examine whether certain covariates are cor-
related with seasonal fluctuations in mortality. The latter group has already
been briefly presented in [139]. A thorough discussion of all methods is not
the scope of the present study: it is almost unfeasible to inspect all methods
such as correlation analysis, regression analysis (linear, logistic, Poisson, . . . ),
analysis of variance (ANOVA), etc., which have been employed for studies of
seasonality.

This chapter is only concerned with the first group, i.e. statistical ap-
proaches to detect, measure and test seasonality. Thus, we remained in a
univariate framework by not including any covariates apart from time or age.
Within the methods analyzed, we can make a further distinction into three
subdivisions:

• Indices to Measure the Extent of Seasonality
• Statistical Tests for Seasonality
• Time-series Methods for Seasonality
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The rationale behind these methods will be introduced and is followed by
a discussion of the their respective pros and cons. The three groups will then
be faced with hypothetical and real data to evaluate how sensitive they are to
various sample sizes and different distributions. The last part of this chapter
will summarize the findings and give recommendations which method should
be applied in which situation.

The presented and evaluated time-series methods have already been im-
plemented by various statistical computer packages. Apart from one test (χ2-
Goodness-of-Fit test), no ready-to-use software was available for any of the
indices or tests. Therefore, these indices and tests have been implemented in
the R-language [170, 301]. The actual code can be obtained from the author.

3.2 Seasonality Indices

3.2.1 Introduction

Most researchers did not perform any statistical test to analyze if a seasonal
pattern is present in a population or not. Instead, they used some descriptive
tools to characterize the pattern they found in their data. The simplest repre-
sentations are monthly death counts. This method was especially widespread
among scientists of the 19th century, as they did not have any sophisticated
methods or computers at their disposal. Tulloch’s analysis, for example, ex-
amined the seasonality in mortality among the British Troops in the West
Indies by revealing monthly death counts [368].

However, even some early researchers used some descriptive tools that
are still common nowadays. In 1912, Lucien March calculated an index for
which he standardized the annual number of deaths to 1,000 [240]. Thus,
values above 83 1

3 indicated above average mortality; values below 83 1
3 stood

for mortality less than what could be expected from a uniform distribution of
deaths across the twelve months. Many recent studies used by and large the
same standardization. But instead of a radix of 1,000, the preferred choice is
1,200. Thus, the expected number for each month in a uniform distribution
is 100 which makes it more apprehensible for users of the decimal system to
detect above- and below-par mortality.

For example, the “Cambridge Group for the History of Population and So-
cial Structure” used this index in their explorations of English population his-
tory [415, 416]. Studies on contemporary mortality also use this “100-Index”
[e.g. 101] which is easy to calculate and interpret.

Besides writing a table with the number of counts or the values of monthly
mortality rates, there are also other possibilities to make the seasonal distri-
bution of deaths comparable over time and/or across populations. The easiest
way is a barplot with 12 categories representing the months on the x-axis and
the usage of bars or lines to represent the actual monthly values (see Figure
3.1 as an example).
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Fig. 3.1. Graphical Representation of Seasonal Mortality Data (Hypothetical Data)

3.2.2 Winter/Summer Ratio

However, a mere graphical description fails to satisfy a researcher as the judg-
ment in comparing two populations (or one across time) depends largely on
eyesight. Thus, statisticians have employed countless indices to describe data
with one number (e.g. the median as measure of central tendency for an or-
dinal variable). An uncomplicated index for seasonality is a mortality ratio
where winter mortality is divided either by summer mortality or by the aver-
age mortality during the year. With the index ϕ1 in Equation 3.1, we opted
to divide the number of deaths in winter by the number of deaths in summer.

ϕ1 =

MAR∑

i=JAN

Deathsi

SEP∑

j=JUL

Deathsj

(3.1)

Such an index has several desired properties. For example, it is easy to
interpret. “1” would indicate that there is no difference between summer and
winter deaths. Values above one correspond to more winter than summer
deaths (and vice versa). A value of 1.24 would indicate that the number of
deaths is 24 percent higher in winter than in summer. Thus, it gives a mea-
surement of the differential between winter and summer deaths but does not
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take into account what happens in other months. In addition, the choice for
the basis of the numerator and the denominator is somehow arbitrary.

3.2.3 Concentration/Dissimilarity Indices

Most other seasonality indices can be interpreted as a measurement of concen-
tration or of dissimilarity. Two central concepts in that area are the Lorenz-
Curve and the Gini-Coefficient. The construction and the interpretation of the
Lorenz-Curve is straightforward. Assume we have a population with a certain
characteristic, e.g. income (which is the typical example in textbooks). The
first step is to order the population by this characteristic and give each indi-
vidual a rank. For each rank, one calculates the proportion of all people whose
rank is smaller or equal to that rank. Simultaneously, you also compute for
each rank the relative frequency of income earned by people whose rank is
smaller or equal to the specific rank [4]. If you plot these two cumulative rel-
ative frequencies, the result will be a Lorenz-Curve, as shown in Figure 3.2.
If the variable of interest is uniformly distributed, the result would be the
solid black curve connecting the points (0, 0) and (1, 1) with a straight line. If
the variable of interest is unequally distributed, the curve still starts at (0, 0)
and ends at (1, 1). But it will bend and, by definition (because of the sorting
procedure), must be convex to the x-axis [192] as shown by the dotted line in
black in Figure 3.2.

Several indices try to express the degree of inequality in a certain popu-
lation based on the Lorenz-Curve. Among them, the Gini-Coefficient is the
“best known and most widely used measure of divergence [. . . ]. It is defined
as an area between the diagonal and the Lorenz Curve, divided by the whole
area below the diagonal” [346, p. 310]. Despite its intuitive appeal, the Gini-
Coefficient has some important drawbacks for analyzing seasonality in deaths:
it is defined for continuous data. Our data, however, are usually given in dis-
crete units i.e. months. This shortcoming is not too problematic. It has been
shown before for other discrete data, that the Gini-coefficient can be adapted
to this situation [e.g. 346]. More important is the following dilemma:

• Either the monthly values are ordered according to their rank as intended
by this procedure. It would then be almost certain that the original order
of the months is not preserved and we could only answer the question
whether our data deviate from a uniform distribution or not. We cannot
make any claims about the shape of the deviation.

• The other approach one could follow is not ordering the data (i.e. the first
category is January, the second category is February, . . . ). In that case
we cannot exclude the possibility that the Lorenz-Curve is crossing the
diagonal and the Gini-Coefficient would be not defined for that situation.
The solid gray line in Figure 3.2 indicates this: A typical seasonal distribu-
tion in an unordered way would not only cover an area in the lower right
triangle for which the Gini-coefficient is defined.
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Fig. 3.2. The Lorenz Curve — Hypothetical Examples

In his study of seasonal mortality in Sweden, John Wilmoth [407] did not
use the real Gini-Coefficient but a related measurement (ϕ2) derived from the
analysis of residential segregation [403]:

ϕ2 =
1
2

12∑

i=1

|pi − qi|, (3.2)

where pi is the observed proportion of deaths in month i, qi is the expected

proportion of deaths in month i.
12∑

i=1

pi =
12∑

i=1

qi = 1; in our case of a uniform

hypothetical distribution q1 = q2 = . . . = q12 = 1
12 .

As long as we use relative frequencies and a uniform hypothetical distri-
bution, the value of ϕ2 ranges from 0 in the case of equal counts in all months
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to 0.91666 (= 1
2

(
11 ×

∣
∣0 − 1

12

∣
∣ + 1 ×

∣
∣1 − 1

12

∣
∣
)
) in the case when events only

occur in one month. Although this approach seems to be fruitful at first sight,
it has a major disadvantage. For real data, the value of ϕ2 does not exceed
0.1. Most emipirical distributions of deaths have a value around 0.03. Another
drawback is its insensitivity to the ordering of the months. It does not take
into account if a peak is followed by a trough by a peak by a trough, etc. or
if there is only one peak and one trough.

Closely related to dissimilarity indices are measurements of concentration.
They can also serve as an index for seasonality. The best known is entropy.
This concept has been developed in information technology and measures the
degree of uncertainty. It was introduced to demography in the mid 1970s by
Lloyd Demetrius [65]. In popular terms, entropy tells you how safe a guess is
when you do not know anything about the exact distribution of the variable of
interest. In the case of a uniform distribution, your guess would be very unsafe
as each category would be equally probable. Entropy, in this case, would reach
its maximum value. If one uses a standardized index, entropy would be 1. If the
distribution is getting closer to a monopolistic situation, entropy approaches
zero. A relative entropy index (ϕ3) with a defined maximum of 1 serves as
our seasonality index [392, p. 22f]:

ϕ3 =
H(A)

H(A)max
=

log2(n) − 1
n

12∑

i=1

n
i
log2(ni)

log2 k
=

log2(n) − 1
n

12∑

i=1

n
i
log2(ni)

log2 12
,

(3.3)

where ni is the number of events in month i and
k(=12)∑

i=1

ni = n; log2 is the

logarithmus dualis, the logarithm to the base 2.

3.3 Tests for Seasonality

Besides these descriptive measurements, several statistics have been proposed
to test for seasonality. They can be broken down into three groups: the χ2-
Goodness-of-Fit test and the “Kolmogorov-Smirnov-Type-Statistic” belong
both to the group of Goodness-of-Fit-Tests; harmonic analyses based on Ed-
wards’ contribution [84] are members of the Edwards’ Family. The third group
consists of Nonparametric Tests.

3.3.1 Goodness-of-Fit-Tests

The χ2-Goodness-of-Fit Test

The χ2-Goodness-of-Fit Test is relatively popular for detecting seasonality
because of its simple mathematical theory, which makes it easy to calculate
and understand [139]. Pearson introduced the concept in 1900 [286] which can
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be applied to a variety of statistical problems [20]. Generally speaking, this
test can be employed whenever the research question is: “In the underlying
population represented by a sample are the observed cell frequencies differ-
ent from the expected cell frequencies?” [344, p. 95] Thus, we test whether
our empirical data can be a sample of a certain distribution with sampling
error as the only source of variability [256]. Usually, this hypothetical dis-
tribution is a uniform distribution. However, there is no restriction on the
underlying distribution. This test requires a sample from a population with
an unknown distribution function F (x) and a certain theoretical distribution
function F0(x). The χ2-Goodness-of-Fit Test examines the Null-Hypothesis
H0 : F (x) = F0(x) against the alternative hypothesis HA : F (x) �= F0(x).
The test-statistic T is calculated as follows:

T =
k∑

i=1

[
(Oi − Ei)

2

Ei

]

(3.4)

where i = 1, . . . , k are the groups in the sample. For seasonality studies,
the value of k is usually 12. Oi and Ei are the observed and expected cell
frequencies of the ith class, respectively. If F0(x) is a uniform distribution,
then E1 = E2 = . . . = Ek.

T is under H0 asymptotically (for n → ∞) χ2-distributed with ν = k − 1
degrees of freedom [158, 321]. The χ2-Goodness-of-Fit Test has been recently
used, for instance, for the analysis of seasonality in suicide, myocardial in-
farction, diarrhea, pneumonia and overall mortality [110, 149, 207, 308, 345,
369, 391]. The major problem of the test is that the value of T is not asymp-
totically χ2 distributed for small sample sizes. “In this case, the χ2 statistic
has positive bias, that is, it tends to be larger than the theoretical chi-square
value it is supposed to estimate” [158, p. 239]. Various rules of thumb have
been proposed for when the approximation is acceptable.1

The typical data on seasonality do not violate any of these restrictions
of the use of the χ2-Goodness-of-Fit Test. For seasonality studies, usually
ν = 11 and more than the suggested 5, 10, etc. cell frequencies are observed.
In addition, the result of this test does not depend on the starting point
(e.g. January, February, or any other month) as does the following test in its
original version [278].

1 For instance:

• Ei has to be ≥ 5 for each cell [344].

• Only if ν ≥ 8 and n =
kP

i=1

Oi ≥ 40 it is allowed to have expected frequencies of

1 in some classes [321].
• k > 2 and nπ0

i ≥ 10 for all i [392].
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A Kolmogorov-Smirnov-Type-Statistic

The original Kolmogorov-Smirnov-Goodness-of-Fit Test (KS-Test) is compa-
rable to the χ2-Goodness-of-Fit Test in several ways. Both approaches are
designed to test if a sample drawn from a population fits a specified distribu-
tion. In addition, the tests are not restricted to a certain class of distributions.
Unlike the χ2-Goodness-of-Fit Test, the KS-Test does not compare observed
and expected frequencies for single classes, but rather the cumulative distri-
bution functions between the ordered observed and expected values. This test
was introduced in 1933 by Kolmogoroff.2 Six years later Smirnoff provided a
more elementary proof of it [204].3 Generally speaking, the KS-Goodness-of-
Fit Test has greater power than the χ2-Goodness-of-Fit test and “is especially
useful with small samples” [354, p. 708]. As for the χ2-Goodness-of-Fit test,
the Null-Hypothesis H0 : F (x) = F0(x) for all x ∈ R is tested against the
Alternative Hypothesis HA : F (x) �= F0(x) for at least one x ∈ R. However,
the ordinary Kolmogorov-Smirnov test contains some disadvantages. The first
problem we face is that this test relies on ungrouped data from continuous
distributions [393]. Also the modified method by Kuiper in 1962 is no longer
valid “once the values [. . . ] have been grouped into months” [113]. Another
problem is the choice of the starting point. Although January is usually taken,
it is somehow arbitrary. But — as pointed out in several articles — the result
and its interpretation depends on the starting point [e.g. 250]. If one has to
choose between (the described Pearson’s) Goodness-of-Fit χ2-test and the or-
dinary KS-Test, Slakter advises to use the χ2-test as it is more valid than the
Kolmogorov Test — even for small sample sizes and a uniform hypothetical
distribution [351]. Freedman proposed an improved version, which eradicates
both drawbacks: the problem of the starting point and of the grouping of
data [113]. The hypothetical cumulative distribution (in our case a uniform
distribution) is denoted by F (t) = t

12 , where t equals the rank of each month
of the year (January=1, February=2, . . . , December=12). The sample cumu-
lative distribution is denoted by FN (t) = j

N , where j is the number of events
(e.g. deaths) that have happened during all months ≤ t. The test-statistic T
is [113, 305]:

T = VN

√
N =

√
N

[

max
1≤t≤12

(FN (t) − F (t)) +
∣
∣
∣
∣ min
1≤t≤12

(FN (t) − F (t))
∣
∣
∣
∣

]

. (3.5)

The distribution of T does not follow any specified distribution (e.g. χ2;
N(µ, σ2), . . . ). Therefore this distribution has been empirically determined by
performing Monte Carlo simulations and is tabulated in Freedman’s article

2 Spelling of Russian names (especially -ov vs. -off) differs not only in this disser-
tation but also in the original papers. Therefore, I opted to use the spelling in
each case from the respective source document.

3 In this article, Kolmogoroff refers to the articles [203] and [352].
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[113]. Freedman’s modified KS-Type Test has been used for the study of birth
seasonality [e.g. 390].

3.3.2 Edwards’ Family

The first statistical test especially designed for seasonality — or more generally
speaking for cyclic trends — is Edwards’ Test published in 1961 [84]. It is “the
most cited and the benchmark against which other tests are evaluated” [394,
p. 817]. Several others modified this test in order to be valid for small sample
sizes or to allow for a different alternative hypothesis. These extensions will
be presented after the discussion of the original contribution. All of them use
sine- and cosine-waves to approximate the observed pattern, and therefore
they are methods which belong to harmonic analysis [142, p. 641].

Edwards’ Test

The underlying idea of the original test [84] is relatively straightforward and
based on a geometrical framework [263]. Given a circle whose circumference
is divided into k equally long parts. In the case of months per year, k = 12.
Thus, each month’s contribution to the surface of the circle is a sector of 30
degrees: January from 0◦ to 30◦, February from 30◦ to 60◦, . . . and finally
December from 330◦ to 360◦. This is shown in Figure 3.3 (page 48).

A weight, Ni, is attached to the center of each segment (i.e. for January
at 15◦, for February at 45◦, . . . ). Ni is the number of events in month i.
If events were uniformly distributed, the center of gravity of this “wheel”
would be the geometrical center of the whole circle as indicated by the small
black circle in Figure 3.3. If, however, there is a considerable “pulse” or an
underlying sinusoidal pattern, the center of gravity shifts away from the geo-
metrical center. The small gray circle could be an example of a concentration
of events in winter and, more precisely, the middle of January. If one is testing
such a cyclical hypothesis against a uniform distribution, Edwards’ Test has a
higher power than the χ2-Test [358]. Walter and Elwood extended Edwards’
approach by allowing unequal expected numbers in each category [396]. In its
original version, the Null-Hypothesis assumes to have equally spaced sectors
with the same frequencies in each division. The allegation that the assumption
of twelve equally spaced time intervals may cause problems in practice [139]
can easily be refuted. One simply has to standardize the number of incidences
according to the specific length of month. The test statistic T = 1

2a2N is
calculated as shown in Equation 3.6 (multi-line notation of T is taken from
the original article [84]):
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Fig. 3.3. Graphical Representation of Edwards’ Test for Seasonality

S =
∑√

Ni sin Θi (3.6)
C =

∑√
Ni cosΘi

W =
∑√

Ni

d =
√

(S2+C2)

W

a = 4d

Ni corresponds to the number of events (e.g. deaths) in month i and
k(=12)∑

i=1

Ni = N . The parameter Θi indicates the position of the weight of

each month on the wheel. Thus, Θi equals 15◦for January, 45◦for February,
. . . , and 345◦for December. 1

2a2N is under H0 asymptotically χ2-distributed
with two degrees of freedom [84]. Edwards’ method has been employed in the
study of coronary heart disease [340], myocardial infarction [131], and overall
mortality [148, 268].
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Roger’s Test

As pointed out by Roger [312], Edwards’ test does not yield satisfactory results
for small and medium-sized samples. “This has the effect of making the type I
errors in the test too large and hence leading to too many spurious significant
results” [312, p. 153]. Roger tried to tackle the shortcoming of Edwards’ Test
for small sample sizes and proposed the following test statistic T [312]:

T =

2

⎡

⎣

{
k(=12)∑

i=1

Ni sin
(

2πi
k

)
}2

+

{
k(=12)∑

i=1

Ni cos
(

2πi
k

)
}2

⎤

⎦

n
(3.7)

Ni represents the number of events in month i, and n =
12∑

i=1

Ni. T is

under H0 approximately χ2-distributed with n = 2 degrees of freedom [244].
According to Roger, his test and Edwards’ original test are equivalent for large
samples. Roger’s extension provided a useful tool for the analysis of “seasonal
variations in variceal bleeding mortality and hospitalization in France” [30].

Pocock’s Method

Pocock’s [291] analysis of seasonal variations in sickness absence belongs also
to the group of tests using harmonic analysis like [84] and [312]. While Roger-
son [312] extended Edward’s approach for small sample sizes, Pocock relaxed
the assumption of a sinusoidal underlying pattern and “allows the alterna-
tive hypothesis of a seasonal pattern of arbitrary shape” [139, p. 49].The test
statistic T , which was originally designed for weekly values for spells of sick-
ness absence, has been slightly adapted for our approach of monthly death
counts. It tests “the seasonal sum of squares” for deviations from the Null-
Hypothesis that deaths occur randomly in time.

T = k

k
2∑

j=1

(
a2

j + b2
j

)

2A
, (3.8)

where k represents the number of intervals (12 months) and j = 1, 2, . . . , k
2 . A

is the mean of the monthly number of deaths Ai in month i = 1, 2, ..., 12(= k).

aj =
2
k

k∑

i=1

Ai cos
2πij

k

bj =
2
k

k∑

i=1

Ai sin
2πij

k

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

j = 1, . . . ,
k

2

T is under H0 approximately χ2 distributed with ν = 11 degrees of
freedeom.
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Cave and Freedman’s Method

Cave and Freedman proposed another modification of Edwards’ test [44]. In-
stead of a sinusoidal curve with only one peak and one trough per year, they
allowed two maxima and two minima. Their test-statistic is, thus, relatively
similar to [84]. The difference is the implementation of the Θ-parameter: while
for Edwards’ test [84] it is required to calculate sin

(
2πΘi

360

)
,4 one proceeds for

the method of Cave and Freedman [44] by computing sin
(

2πΘi

180

)
, thus stan-

dardizing 2π to 180◦.

3.3.3 Nonparametric Tests

Hewitt’s Test and Rogerson’s Extension

Edwards [84] mentioned that his test was only one approach to measure sea-
sonality. He explicitly considers also a nonparametric alternative whose con-
struction is relatively similar to a simple Run-Test [393]. Based on that brief
suggestion — two paragraphs in Edwards’ original article — Hewitt et al.
elaborated a nonparametric test based on rank-sums [150]. While Edwards
suggested “to consider the ranking order of the events which are above or
below the median number” [84, p. 83], Hewitt et al. [150] propose to use “all
the ranking information rather than a simple dichotomy” [150, p. 175]. Ac-
cording to them, the monthly frequencies are ranked. The month with most
occurrences (e.g. deaths) will have the value “12” assigned. Consequently, “1”
indicates the month having the least events. Keeping the original order of
the months (e.g. starting with January and ending with December), we can
calculate the rank-sums of six consecutive months (January–June, February–
July, . . . , December–May). The test statistic T is the maximum value that
one of the rank-sums attains. T can range from 21(=1+2+3+4+5+6) to
57(=12+11+10+9+8+7) and is symmetrically distributed. The authors sug-
gest referring to the upper tail of the cumulative distribution for significance
testing which they tabulated in their article based on 5,000 Monte-Carlo trials.
Not surprisingly, their empirical results correspond closely to Walter’s exact
significance levels for Hewitt’s test calculated nine years later [395]. Using
such a test based on ranks has the advantage that one “avoids the problem of
specifying a particular algebraic version” [113, p. 225] of what is meant by sea-
sonal fluctuation. However, it lacks power for small and moderate sample sizes
[113]. Besides, this test cannot be applied — as Reijneveld [305] points out —
if there are ties. For our analysis of mortality with relatively large samples,
though, ties seem to be quite unlikely. Of more relevance are the objections
of Rogerson [315], Wallenstein [394] and Marrero [244] to “the assumption
that the year is split into two equally wide intervals of 6 months each” [315,
p. 644]. While Wallenstein and Marrero take a “one-pulse model” also into

4 this applies obviously also to cos
`

2πΘi
360

´
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consideration, Rogerson develops a generalization of Hewitt’s Test for peak
periods of 3-, 4-, and 5-months [315]. Similar to taking the maximum rank
sum of all possible combinations of six consecutive months, Rogerson uses
the maximum rank sum of any consecutive three, four, or five month period,
respectively. Because of its relative simplicity to calculate, Hewitt’s Test has
enjoyed widespread use [315]. However for the analysis of seasonal mortality
it has not been employed as often as Edwards’ Test or the χ2-Goodness-of-Fit
Test. To my knowledge, Akslen’s and Hartveit’s application to seasonal vari-
ation in melanoma deaths has been the only application of it so far [1]. Apart
from Walter’s exact specification of significance levels for Hewitt’s test [395],
the distributions of the respective test statistics were based on relatively few
randomly generated sequences of data. The appendix (Section B.1, page 181)
shows results from my own simulations.

David-Newell-Test

Another nonparametric alternative was proposed by David and Newell [64].
Their suggestions, however, have not received much attention. In contrast to
Hewitt’s non-parametric test for seasonality, one does not use the ranking
information but the actual number of events.

T = max
i

∣
∣
∣
∣
Mi − Mi+6√

N

∣
∣
∣
∣ (3.9)

where Nj is the number of events in month j and M =
j+5∑

j

Nj ; N =
12∑

j=1

Nj .

The test statistic T does not follow any standard distribution. Therefore the
critical values for two significance levels (α0.01, α0.05) are given in their paper
[64].

3.4 Time-Series Methods

3.4.1 Introduction

The previous sections have focused on indices and statistical tests to describe
seasonality and test for seasonality in data grouped into one year. Contrast-
ingly, the following sections deal with the analysis of seasonal time-series.
Typically, these data are either count data or rates over time.

Most analyses of seasonal time-series data have the opposite aim than
our approach: conventionally, researchers try to “seasonally adjust” the time-
series. This means that one wanted to get rid of the seasonal “distortions” to
identify the “true effect”. We, however, are interested in seasonality itself: How
does the seasonal pattern change over time? Despite these two antagonistic
theoretical starting points, the actual analyses can be carried out with the
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same methods because both approaches need to model the exact seasonal
signal from the data.

Basically, there are two approaches for seasonal time-series-analysis: either
one decomposes the time-series into several components, or one models all of
these aspects simultaneously [389]. In reality, methods for analyzing seasonal
time-series cannot always be clearly assigned to one of the groups as they
are using methodology from both strains. In the following paragraphs, I want
to briefly outline what is meant by decomposition methods and simultane-
ous modelling. Subsequently, I will discuss several of the methods which are
actually used and also implemented in various software packages.

3.4.2 Decomposition Methods

It is argued that decomposing time-series started in the 1920s at the National
Bureau of Economic Research (NBER) [417] of the United States. Starting
with the first “monthly means method” and the “ratio to moving average
method” [270] to modern methods, decomposition methods are based on the
assumption that the observed data contain four components [335]:

Trend: The trend is the long-term change in the time-series. In the analysis
of seasonal mortality two thrusts can be imagined to influence the trend
over time: First, a change in the variable of interest: death rates are falling
rapidly for people above age 70 at least for the last 30 years [378]. Secondly,
a compositional change can either increase the effect of the variable of
interest or it can be counteracted. The latter is more probable for the
analysis of death counts as more and more people attain very high ages
because of improved survival conditions [383].

Cycle: The cyclic component captures a fluctuation with a frequency of more
than one year [335]. While they are an important part of economic analy-
sis, e.g. the Kondratieff long economic cycles [205], they play only minor
role in mortality research.5 The cyclic component is sometimes not ex-
tracted on its own but rather as a part of the trend component.

Season: The seasonal component is an annually repeating pattern observed
in the time-series, and is the feature of the data which is our main fo-
cus. While it is beyond doubt that climate shapes the basic pattern of
seasonal mortality fluctuations, a large body of literature shows that the
impact of climate can be mediated and alleviated. Consequently, we want
to analyze how seasonal fluctuations are changing over time, which mea-
sures indirectly the influence of improvements in public health and general
living conditions.

Irregular: The remainder between the aforementioned components and the
observed data is summarized in the irregular component.

5 I consider the analysis of Stoupel et al. [359] concerning the impact of “space
proton flux” on the temporal distribution of cardiovascular deaths as negligible.
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Basically, there are two approaches on how these components constitute
the observed time-series: In an additive model, one assumes that the trend
component yt

t (includes the cyclic component), the seasonal component ys
t and

the irregular component yres
t are working independently. Thus, the resulting

model would be:
yt = yt

t + ys
t + yres

t (3.10)

In the majority of real-world applications, however, independent effects are
rather the exception rather than the rule. Thus, a multiplicative combination
of the trend and the seasonal components

yt = yt
t × ys

t + yres
t (3.11)

is often preferable.

3.4.3 Simultaneous Modelling

In contrast to the decompositon approach, the time-series data can also be
modelled simultaneously. This is done by so-called seasonal ARIMA-Models.
This approach follows the Box-Jenkins methodology [32] of identifying parsi-
monious models for the data under scrutiny. A seasonal ARIMA-Model is an
extended ARIMA-Model. An ARIMA-Model is an extended ARMA-Model.
Thus, I want to start with the basic model: An ARMA-Model consists of an
autoregressive (AR) and of a moving average (MA) part. As explained in [95],
“an AR(p) process is specified by a weighted average of past observations go-
ing back p periods, together with a random disturbance in the current period
[ . . . ], an MA(q) process is specified by a weighted average of past random
disturbances going back q periods, together with a random disturbance in the
current period.”6 The aim of ARMA modeling is a parsimonious model. This
means in the words of its creators to “employ the smallest possible number
of parameters for adequate representations” [32, p. 16]. Typical diagnostics
to check for pickung the best model are, for example, the Akaike Information
Criterion (AIC) or the Schwarz Bayesian Criterion. However, ARMA Mod-
elling requires a stationary time-series. If the data are non-stationary which
is rather the rule than the exception, the ARMA(p, q) Model is extended to
an ARIMA(p, d, q) Model (ARIMA=Auto Regressive Integrated Moving Av-
erage). In such an ARIMA-Model, the time-series is first differenced finite d
times until a stationary process is obtained. Seasonal ARIMA-Models repre-
sent a further extension. The general form of such a SARIMA Model is:

ARIMA(p, d, q)(P, D, Q)12.

6 Mathematically, the specifications may be written as given by Box et al. [32,
p. 52]:

AR(p) : z̃t = φ1z̃t−1 + φ2z̃t−2 + . . . + φpz̃t−p + at

MA(q) : z̃t = at − θ1at−1 − θ2at−2 − . . . − θqat−q
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In addition to the previously explained parameters p, d, q, SARIMA con-
tains the parameters P, D, Q indicating autoregressive (P ) and moving aver-
age (Q) components differenced D times at a seasonal lag. In the case of an
annual seasonal pattern with monthly values, the respective lag is 12 months.

3.4.4 Seasonal Time-Series Methods

The “Classical” Decomposition Method

The “classical” decomposition method uses moving averages as outlined in
Brockwell and Davis [34] or Hartung [142]. The first step is an estimation of
the trend “by applying a moving average filter specially chosen to eliminate the
seasonal component and to dampen the noise”[34, p. 30]. The seasonal com-
ponent is then estimated by computing the average deviation of the monthly
values from the estimated trend. This method is, however, irrelevant for the
rest of this chapter, as it contains a constant seasonal component. The aim of
this research is, though, exactly the analysis of this seasonal component over
time (or age).

X-11

Still the most widely used method is the so-called “X-11, Census II” method.
Its development can be traced back to the “ratio to moving average method”
from the 1920s. The various revisions have been labeled “X-” followed by the
version number. X-11 was developed at the U.S. Bureau of the Census in 1965
by Julius Shishkin [417].
The estimation is performed in several steps [cf. 417]. Ghysels and Osborn
[122] and Yaffee [417] give an overview how these steps are performed. We are
following the overview given by Fischer [108] for the X-11 ARIMA variant:7

1. First estimate of the seasonal and the irregular component using a 12 term
moving average.

2. Preliminary estimate of the seasonal factors using a 5-term moving aver-
age.

3. A 12-term moving average is applied to the preliminary factors found in
the previous step.

4. The seasonal factor estimates are divided by the seasonal irregular ratio
to obtain an estimate of the irregular component.

5. Detection of outliers
6. Adjustment for the beginning and the end of the time-series (necessary

since symmetric filters are used).

7 X-11 uses moving averages for the estimates. Since these weights are symmetric,
problems arise in the beginning and in the end of the time-series. To remedy
this drawback, Statistics Canada introduced the so-called X-11-ARIMA/88 to
improve the fore- and back-casting possibilities of X-11 [cf. 417, 55–56].
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7. Estimation of preliminary seasonal factors by applying a weighted 5-term
moving average to the SI (ratio of the seasonal and irregular component)
ratios with replacement of extreme values (detected two steps earlier).

8. Step 3 is repeated and applied to the factors in step 7.
9. Division of the original data by the result from the previous step to obtain

a preliminary seasonally adjusted time-series.
10. The original series is divided by the result of applying a moving average

to the seasonally adjusted series.
11. Applying a weighted 7-term moving average to each month’s SI ratio

separately. This results in a second estimate of the seasonal component.
12. Step 3 is repeated.
13. The original series is divided by the result from step 11 to obtain a sea-

sonally adjusted time-series.

Fischer [108, p. 15] gives a flow-chart to display graphically this procedure.
Despite its popularity, several serious drawbacks of X-11 have been pointed
out [14, 53, 303]:

• Using X-11 can imply that a non-seasonal cycle can be wrongly specified
as seasonal.

• X-11 is not very robust in the case of a sudden change in the trend. This
might sound unimportant as natural processes typically do not change all
of a sudden. However, in the analysis of seasonal mortality of a specific
cause of death across time, relatively abrupt changes in the trend can
happen after an ICD-Revision8 — no matter how careful the preparation
of the time-series.

• In the case of zero-value observations (�=missing values), neither an addi-
tive nor a multiplicative X-11 approach is applicable. Zero events might
happen in certain age-groups for diseases with a highly seasonal pattern
like deaths from influenza.

• X-11 may over- or under-estimate the seasonal component (non-idem-
potency). The lack of this property is a serious shortcoming for the analysis
of seasonal changes over time.

• The values for the seasonal factors depend on the beginning of the time-
series. As pointed out by Raveh [303], X-11 yields different seasonal esti-
mates for the same original values if the series is shifted forward for half
a year, for instance.

• X-11 is over-sensitive to outliers. This problem of the original variant,
though, seems to be eradicated by X-12.

Despite these disadvantages, X-11 is still a popular choice. The original version
has been employed for the analysis of seasonal mortality in an early 20th

century population [21] and more recently for examining seasonal deaths in
the United States [102]. An example for X-11-ARIMA is Richard Trudeau’s

8 ICD is the abbreviation for “International Statistical Classification of Diseases”.
See http://www.who.int/whosis/icd10/ .
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study on “monthly and daily patterns of death” in Canada [367]. For our
analysis, we used X-12-ARIMA which is the successor to X-11-ARIMA “to
handle additive outliers and level shifts” [35, p. 1]. The estimates should be at
least as good as X-11 since it improves the detection and correction of outliers
and estimates automatically the ARIMA-Models [108, p. 16].

SABL

William S. Cleveland and his colleagues did not only pin-point the weaknesses
of X-11, they also suggested alternative procedures. Their first suggestion was
the so-called SABL [50, 51].9. This procedure works basically in four steps
[51]:

1. A power transformation of your time-series
The power transformation is carried out as follows [52, p. 53]:

x(p) =

⎧
⎪⎨

⎪⎩

xp if p > 0
loge x if p = 0
−xp if p < 0

(3.12)

The value of the power p should be chosen to minimize the interaction
between the trend and the seasonal component. Fortunately, the program
Splus picks the best p-value — provided a vector of possible values has
been given before.

2. Additive decomposition of the transformed time-series into trend, sea-
sonal, and irregular component. The details of this decomposition are
described in [p. 15–16 51]:10

a) “A combination of smoothers, which involve moving medians for ro-
bustness, is used to get initial estimates of the trend and the seasonal.
Moving medians are similar to moving averages except that means are
replaced by medians.

b) The irregular, which is the series minus the trend and seasonal, is
computed.

c) Robustness weights are computed using the irregular values. Irregular
values large in absolute value receive small or zero weight.

d) Updated estimates of the trend and seasonal are computed using
smoothers that are doubly-weighted moving averages. The two sets of
weights are those computed in step (c) and the usual kind of weights
in moving averages.

e) Steps (b) to (d) are repeated using the updated estimates of trend
and seasonal. The trend and seasonal component in step (d) on the
second pass are the final trend and seasonal.”

9 SABL is the abbreviation for Seasonal Adjustment at Bell Laboratories
10 Alternatively, one can also consult the flowchart given in [108, p. 12].
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3. Seasonal Adjustment. This step is not required in our estimations since
we are interested in the final seasonal component obtained in the previous
step.

4. In its original version, SABL printed tables and plotted graphs. We do
not need this option since we are using modern statistical software which
allows for printing the results and plotting the graphs in a user-defined
way.

STL

The seasonal decomposition STL was also invented by Cleveland and his col-
leagues [48]. As usual, the data are decomposed into three components: a
trend, a seasonal part and a remainder. Among other criteria, the authors
wanted to develop a procedure which has a simple design, its use is straight-
forward, does not have problems with missing values, has a robust trend and
seasonal component, and is easily and quickly implemented on a computer.
The core of the procedure are smoothing operations based on locally-weighted
regression (loess). As written by Cleveland et al. [48, p. 6]: “STL consists of
two recursive procedures: an inner loop nested inside an outer loop. In each
of the passes through the inner loop, the seasonal and trend components are
updated once; [. . . ] Each pass of the outer loop consists of the inner loop
followed by a computation of robustness weights; these weights are used in
the next run of the inner loop to reduce the influence of transient, aberrant
behavior in the trend and seasonal components.” The inner loop consists of
the following steps [48, p. 7–8]:

1. Detrending
2. Smoothing of the Cycle Subseries
3. Filtering of the Smoothed Cycle-Subseries (obtained from pervious step)
4. De-trending of Smoothed Cycle-Subseries
5. De-seasonalizing
6. Trend Smoothing

BV4

BV4 is the abbreviation of the fourth revision of the so-called “Berliner Ver-
fahren”. It is the official seasonal adjustment method of the Statistisches Bun-
desamt (Federal Statistical Office) in Germany. It was developed by Martin
Nourney and is described in detail in [275, 276, 277]. Currently the Statistis-
ches Bundesamt is replacing BV4 with an updated version called BV4.1 which
can handle calendar effects and outliers better. According to Speth [357] three
of the main advantageous characteristics of BV4.1 are:

• Low cost benefit ratio because high-quality analysis can be performed
without expert knowledge and without much experience for time-series
decomposition methods.
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• Results are independent from the user.
• High efficiency of the seasonal adjustment which can incorporate even

rapid changes in the seasonal component.

BV4.1 assumes (after a possible transformation of the data, e.g. a log-
transform) an additive decomposition of the time-series of the form [104, 105]:

Yt = G(t) + S(t) + εt. (3.13)

G(t) denotes the trend-cycle component (“Glatte Komponente”) which is ap-
proximated by a third-order polynomial: G(t) = ŷt

t = a0 + a1t + a2t
2 + a3t

3.
The seasonal component S(t) is approximated by 11 trigonometric functions
[see also 108]:

ys
t =

5∑

i=1

(bi cosλit + ci sin λit) + b6 cosλ6t.

The irregular component εt is an independently, identically distributed
random variable with mean 0 and a constant variance σ2. The actual fitting
procedure is performed by locally weighted least squares.

TRAMO/SEATS

TRAMO/SEATS has been developed by Victor Gómez and Agust́ın Mar-
avall.11 Their work is based on “seasonal adjustment by signal extraction” by
Burman [39]. A detailed, technical description of TRAMO/SEATS is given in
[239]. Fischer [108] summarizes the six steps of the TRAMO/SEATS proce-
dure as follows (a flow-chart with more details is given on page 18 of [108]):

• TRAMO identifies automatically an ARIMA Model
• Simultaneously, outliers are detected
• TRAMO passes its results to SEATS
• “In SEATS, first the spectral density function of the estimated model is

decomposed into the spectral density function of the unobserved compo-
nents, which are assumed to be orthogonal” [108, p. 17]

• Then, the trend-cycle and the seasonal component are estimated
• In the last step, outliers are re-introduced.

3.5 Evaluation of Seasonality Indices and Tests Using
Hypothetical and Real Data

3.5.1 Description of Datasets

We distinguish between real and hypothetical data. If real data were taken
from publications which introduced a measurement for seasonality, the data
11 TRAMO stands for Time Series Regression with ARIMA Noise, Missing values

and Outliers. SEATS stands for Signal Extraction in ARIMA Time Series.
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were used to check the correct implementation of the underlying algorithm.
Otherwise real data from other sources were used to analyze how the various
indices and tests behave in typical situations of seasonal mortality analyses.
They are briefly described in the next section and are plotted in Figure 3.4.
Hypothetical data served only experimental purposes. For example, we think
that any measurement should test positively if a pronounced sine wave is
present. Random numbers and a uniform distribution should, conversely, not
detect seasonality at all. For the hypothetical data, I have always created two
data-sets: one with a small sample size and one with a larger sample size as
described below. For each category, only the data based on the larger sample
is plotted in Figure 3.5.

Real Data

Wrigley: These data consist of 75,398 deaths from the British parish register
data between 1580–1837. These data represent standardized death counts
where 100 indicates the mean number of monthly deaths. Wrigley et al.
[415] provide more details.

Nuns and Monks: Marc Luy kindly provided death counts from his data col-
lection on Bavarian nunneries and monasteries [229]. A detailed descrip-
tion can be found in [228]. The nuns’ data-set consists of 3,919 individuals
who have died during the 20th century in the analyzed nunneries. In the
other data-set all 349 male deaths are included which occured in the re-
spective monasteries during the 19th century.

Union Army: These data are taken from the Public Use Tape on the Aging
of the Veterans of the Union Army [111]. It consists of 24,610 individuals
who died between January 1862 and December 1937. Each death has
been recorded by month and year of death. Thus, the aggregated data-set
contains 912 records. For our analysis we only used deaths starting in 1866
to avoid distorting effects due to the Civil War.

Danish Register Data: All Danes are included who were alive on 1 April 1968
and 50 years or older and died by August 1998. The data from which these
1,176,383 deaths have been derived are explained in more detail in [72].

Respiratory Diseases: The data-set includes 25,272.56 men who have between
January 1959 and December 1998 from respiratory diseases in the United
States being between 80 (inclusive) and 90 (exclusive) years of age. The
reason for the non-integer number of deaths is that monthly deaths have
already been adjusted to the same length. The data were taken from the
public use files of the Centers for Disease Control and Intervention (CDC).
These data are described in more detail in Chapter 4.

Anencephalics: The monthly distribution of 176 cases of anencephalics that
have occurred in Birmingham between 1940 and 1947 are given in [84].

Lymphoma: The monthly distribution of 133 cases of Burkitt’s lymphoma
from the West Nile district of Uganda between 1966 and 1973 are given
in [113].
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Fig. 3.4. Graphical Representation of Real Data-Sets

Suicides: The monthly distribution of adolescent suicides (3474 cases) in the
United States, 1978–79, is given in [315].

Leukemia: The monthly distribution of the onset of acute lymphatic leukemia
between 1946 and 1960 (506 cases) is taken from the British National
Cancer Registration Scheme as reported in [64].
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Crohn’s Disease: Cave and Freedman [44] give a bar-plot displaying the
monthly distribution of the onset of Crohn’s disease for 211 patients in
three British hospitals between 1945 and 1974. More details about the
data can be found in the original article.

Hypothetical Data

Uniform Distribution: Two vectors with 12 elements — each of the 12 ele-
ments representing the numbers of death in a month —are given consisting
of either 5 or 5000 cases in each month.

Sine Wave: Again, we have two vectors with 1 entry for each month. The
“small” sine wave has a maximum value of 12 in January and 8 in July,
whereas the large sample’s extreme values are 120 and 80 in the same
months.

Cosine Wave: The Cosine Waves are equivalent to the two Sine Waves with
a forward shift of 3

2π. One should expect the same results as for the Sine
Wave data as we basically face the same pattern. Testing the measure-
ments with the Cosine data can help to evaluate whether certain indices
or tests are restricted to the Northern Hemisphere with a peak in the first
(few) months of the year.

Local Summer Peak: The literature on seasonal mortality sometimes also
refers to a second peak in summer. The data-sets are the same as the
Sine Wave data apart from the minimum. Instead of values of 8 and 80
respectively in July, we have values of 10 and 100.

One-Pulse Pattern: Some causes of death do not have a sinusoidal but a “one-
pulse”-pattern. This means that deaths are uniformly distributed through-
out the year with the exception of some months where deaths rise rapidly.
Our data have 10 (small sample) and 100 (large sample) deaths in each
month. In winter, however, deaths suddenly increase, reaching a peak in
January and February of 13 and 130 deaths, respectively.

Random Pattern: Randomly distributed numbers should (in general) not re-
sult in significant test results for seasonality. The random numbers are de-
rived from the “true” random number generator at http://www.random.
org. Integers were generated between 900 and 1100 for the larger sample;
for a smaller sample we used the same numbers but divided each of them
by 10.

3.5.2 Results and Discussion for Indices and Tests

Results and Discussion for Indices

Table 3.1 shows the results for the three descriptive indices ϕ1, ϕ2, ϕ3. The
upper section refers to hypothetical data, in the lower section we faced the
indices with real data. In our synthetically generated data only one value is
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Fig. 3.5. Graphical Representation of Hypothetical Data-Sets

given for each pattern (uniform distribution, sine wave, . . . ) as all indices are
inelastic with regard to sample size.

As mentioned in their description above, seasonality indices are closely
related to measures of inequality. Goodwin and Vaupel [126] suggested several
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Table 3.1. Sample Sizes and Results for Descriptive Indices ϕ1 (Winter/Summer),
ϕ2 (Dissimilarity), and ϕ3 (Entropy) for Seasonality of Hypothetical and Real Data

Hypothetical Data Sample Size N ϕ1 ϕ2 ϕ3

Uniform 60 / 60,000 1.000 0.000 1.000
Sine Wave 120 / 1,200 1.375 0.062 0.996
Cosine Wave 120 / 1,200 0.833 0.062 0.996
Local Summer Peak 123.73 / 12,373.32 1.274 0.048 0.997
One-Pulse Pattern 129.5 / 1,295 1.267 0.049 0.998
Random Pattern 122.2 / 1,222 1.094 0.029 0.999

Real Data Sample Size N ϕ1 ϕ2 ϕ3

Wrigley 1,199 1.165 0.032 0.999
Nuns† 3,919 1.266 0.038 0.998
Monks† 349 1.656 0.100 0.989
Union Army Veterans† 24,610 1.191 0.034 0.999
Danish Register Data† 1,176,383 1.161 0.028 0.999
Respiratory Diseases 25,272.56 1.781 0.102 0.989
Anencephalics† 176 1.605 0.139 0.978
Lymphoma† 133 0.627 0.167 0.969
Suicides† 3,474 1.191 0.034 0.999
Leukemia† 506 0.749 0.087 0.992
Crohn’s Disease† 211 1.113 0.132 0.982

† Monthly values have been adjusted to equal weights

desirable properties for “Measures of Evenness”. Most of them can also be
applied to the field of seasonality:12

The Relativity Principle: The relativity principle refers to sample size. Ac-
cording to the principle, it is a desirable property for any index that it
should be independent from the sample size, as long as the proportions of
each category remain the same. An index which fulfills this condition will
return the identical value for a data-set of 100 individuals and 100 million
individuals if the corresponding subgroups in each population contribute
the same share. All our three indices fulfill this condition. To produce the
upper part of Table 3.1, we used data with the same basic distribution
and only varied the sample size. When we analyzed the data, ϕ1, ϕ2 as
well as ϕ3 gave exactly the same results.

The Transfer Principle: According to this principle, a diversity measure should
increase if there are any transfers from a “poor” individual to a “rich” in-
dividual. Applied to the case of seasonality in mortality, any good index

12 The so-called Anonymity Principle, for instance, is not included. This principles
states that an index should be anonymous in the sense that it does not matter
which element of the underlying population has a certain trait. It is less useful
for the analysis of seasonality because a seasonality index should actually take
into account whether January or September shows higher mortality values.
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should increase if there is a transfer from a low mortality month such as
June to a high mortality month like December.13 All indices fulfill this
property as well. For instance, if a certain number of deaths occur less in
summer but more in winter, the winter/summer ratio ϕ1 would increase,
likewise ϕ2, the dissimilarity index. As entropy ϕ3 is measuring concentra-
tion it decreases, consequently. It has to be mentioned, though, that not
all possible transfers affect ϕ1. If there are any transfers between spring
and autumn months, this winter/summer ratio will remain constant.

Standardization: Standardizing an index to a certain interval, say [0; 1], facili-
tates describing population across time or across countries. The dissimilar-
ity index ϕ2 fulfills this condition. In the case of a uniform distribution, its
value is 0. If deaths occur only in one month, it reaches its maximum value
(for the case of 12 possible event times) 0.91666. In the same scenario, en-
tropy (ϕ3) would be bounded by 1 (uniform distribution = “minimum
safeness of a guess”) and would approach 0 in the case where deaths are
only possible in one month. The winter/summer index is only bounded
on one side. If death is equally probable in each month, ϕ1 would be 1.
If deaths only occurred in summer, ϕ1 would approach 0; on the other
extreme if deaths exclusively happened in winter, ϕ1 → ∞.

Intelligibility: “Ideally, a measure should be easy to comprehend, intuitively
meaningful, simple to explain to others, and naturally relevant to the
problems addressed” [126, p. 11]. The winter/summer ratio is the only in-
dex which fulfills all these conditions, especially the explanation to other
people of the dissimilarity index or of entropy is considerably more com-
plicated for ϕ2 and ϕ3 than for ϕ1. It also seems to be more meaningful
intuitively. For example, a value of 1.26 from ϕ1 (real data: nuns) can
be read as: among nuns in the respective data-set, 26% more died dur-
ing winter than during summer. The corresponding values of ϕ2 = 0.038
and ϕ3 = 0.998 can contribute only little to the understanding of the
underlying phenomenon.

Based on these criteria, it is difficult to make a decision for which index is
best suited for seasonality studies. It can be argued that the winter/summer
ratio ϕ1 is preferable because of its better intelligibility and because ϕ2 and
ϕ3 are unfavorable due to the following reasons:

• Standardized entropy (ϕ3) does not seem to be a useful index because
we observed only values between 0.996 and 1 for hypothetical data and
between 0.969 and 0.999 for real data in our analysis. As this index is
standardized to have a value range of (0; 1], ϕ3 uses only roughly 3% of its
potential range. The dissimilarity index ϕ2 performs only slightly better
than ϕ3 in that respect (18% of the value range is used).

13 This, of course, holds only for measurements of unevenness. If we measure con-
centration, the opposite direction should be true.
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• Neither index can distinguish between two patterns where one has its peak
in winter and the other one has its maximum value in summer (i.e. ϕ2 and
ϕ3 would give the same results in both situations).

• A related problem is the order of the months: The indices ϕ2 and ϕ3 do
not take the ordering of the months into account: It does not matter, for
instance, for ϕ2 or for ϕ3 whether the values appear as in a sine wave
or in any other order. Clearly, an unfavorable property of any index for
seasonality.

Results and Discussion for Seasonality Tests

Figures 3.6 and 3.7 (pages 66, 68) show the results of our analysis of the
tests described in section 3.3. The tests are ordered according to which group
they belong to: Goodness-of-Fit tests, the “Edwards’ family” or nonparamet-
ric tests. All of them are faced with the data-sets outlined in section 3.5.1.
Hypothetical as well as real data were tested for two levels of significance:
α1 = 0.95; α2 = 0.99. In the case of hypothetical data, we tested both sample
sizes as indicated by “small” and “large”. To facilitate recognizing the out-
comes of these tests, they were labeled with a dark gray square and a “−”-sign
in case of insignificant results at the given level. A light gray square and a
“+”-sign were used for significant values.

All tests passed a minimum requirement: as displayed in Figure 3.6, none
of the tests detects seasonality for a uniform distribution nor for the random
pattern — regardless of the sample size. The tests developed by Cave and
Freedman [44] and by Pocock [291] will be excluded from further analysis, as
they did not evaluate any of the hypothetical data-sets to be seasonal [44] or
only the sine/cosine-data based on a large sample [291].
An advantage of all tests presented here is that they show exactly the same
results for a sine and a cosine wave if the sample size is the same in both
instances. This implies that all of them can be applied on both hemispheres
giving the same results. While this requirement sounds obvious, the most
widely-used seasonal time-series method, X-11, does not produce the same
results if data start in January or in June [303]. Nevertheless, it is quite sur-
prising that neither any Goodness-of-Fit-test nor any test from the “Edwards’
Family” tests positively for seasonality for the sine- and cosine curves when
the sample size is small. Only the non-parametric tests yield significant values.
Because of their definition (using ranks instead of the actual counts or rates),
Hewitt’s tests and its generalization by Rogerson output the same values for
small and large sample sizes. For the data-sets with a local summer peak or
displaying only one pulse, we again detect the sample-size dependency for the
Goodness-of-Fit tests and for the “Edwards’ Family”: no seasonality for small
samples, significant ρ-values for large samples. The nonparametric tests for
peak periods of 3 and 4 months behave as expected by returning significant
results for the hypothetical data with one-pulse.
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Hypothetical Data (Part A)           Uniform       Sine Curve      Cosine Curve

small large small large small large

Test 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

1. Goodness-of-Fit-Tests

1.1 Chi-Square - Goodness of Fit - - - - - - + - - - + -

1.2 Kolmogorov-Smirnov-Type-Statistic - - - - - - + + - - + +

2. Edwards’ Family

2.1 Edwards’ Test - - - - - - - - - - - -

2.2 Roger’s Extension of Edwards’ Test - - - - - - - - - - - -

2.3 Pocock’s Method - - - - - - + - - - + -

2.4 Cave and Freedman - - - - - - - - - - - -

3. Non-Parametric-Tests

3.1 Hewitt’s Test 
1

- - - - + - + - + - + -

3.2 Rogersons’ Generalization for

3.2.1 a 5-months peak 
1

- - - - + + + + + + + +

3.2.2 a 4-months peak 
1

- n.a. - n.a. + n.a. + n.a. + n.a. + n.a.

3.2.3 a 3-months peak 
1

- n.a. - n.a. + n.a. + n.a. + n.a. + n.a.

3.3 David-Newell-Test - - - - - - + + - - + +

Hypothetical Data (Part B)  Local Summer Peak One Pulse Pattern      Random Pattern

small large small large small large

Test 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

1. Goodness-of-Fit-Tests

1.1 Chi-Square - Goodness of Fit - - - - - - - - - - - -

1.2 Kolmogorov-Smirnov-Type-Statistic - - + + - - + + - - - -

2. Edwards’ Family

2.1 Edwards’ Test - - + + - - + + - - - -

2.2 Roger’s Extension of Edwards’ Test - - + + - - + + - - - -

2.3 Pocock’s Method - - - - - - - - - - - -

2.4 Cave and Freedman - - - - - - - - - - - -

3. Non-Parametric-Tests

3.1 Hewitt’s Test 
1

+ - + - - - - - - - - -

3.2 Rogersons’ Generalization for

3.2.1 a 5-months peak 
1

+ + + + - - - - - - - -

3.2.2 a 4-months peak 
1

+ n.a. + n.a. + n.a. + n.a. - n.a. - n.a.

3.2.3 a 3-months peak 
1

+ n.a. + n.a. + n.a. + n.a. - n.a. - n.a.

3.3 David-Newell-Test - - + + - - + - - - - -

1) The actual levels of significance for the non-parametric tests are:

Levels of Significance       0.05       0.01

Hewitt    0.0483     0.0130

Rogerson 5 months peak    0.0562     0.0152

Rogerson 4 months peak    0.0470       n.a. (Max. Ranksum=42; p42=0.0267)

Rogerson 3 months peak    0.0545       n.a. (Max. Ranksum=33; p33=0.0545)

Fig. 3.6. Results for Seasonality Tests: Hypothetical Data

Switching to the evaluation of the tests using real data in Figure 3.7, the
first impression is that significant results are the rule rather than the exception
(as in Figure 3.6). This indicates that most of our hypothetical data fulfilled
one of their requirements: They represented rather extreme cases one is usually
not faced with in reality.
All tests produced significant results on the α1 = 0.95; α2 = 0.99 levels for
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the Danish Register Data and for Respiratory Diseases. As both data-sets
show a pronounced sinusoidal pattern, it is obvious that the nonparametric
tests yield this result. The significant values for the Goodness-of-Fit tests and
the “Edwards’ Family” when evaluating the Danish register data underlines
their sample size dependency: If one were taking simply the relative monthly
frequencies, the Danish data would show less fluctuation than the hypothetical
sine wave which was tested negatively for small sample size. The χ2-Goodness-
of-Fit-Test, especially, seems to be extremely sensitive to sample size. It does
not yield significant results for the monks data at all, while the nuns data are
highly significant. When looking at the histograms of both data (Figure 3.4 b
and c), the eye would assign the tag “seasonal” to the monks’ rather than to
the nuns’ monthly distribution of deaths. For the five data-sets shown in the
lower part of Figure 3.4, the nonparametric tests show only rarely significant
results. This is probably due to the sparse data of some data-sets such as
Lymphoma (Figure 3.4 h) or Leukemia (Figure 3.4 j) where assigning ranks
might not be the best option.

Most of the desired properties for inequality indices do not narrow down
the choice for a “best” seasonality test. Tests which are based on ranks like
the nonparametric tests presented here fulfill the “relativity principle”. Ac-
cording to that principle, the outcome should be dependent on the relative
contribution of each group — regardless of the sample size. On the contrary,
the nonparametric tests cannot pass the “transfer principle”. If deaths were
“shifted” from months with low mortality to months with high mortality, the
non-parametric tests would not necessarily result in more significant ρ-values.
This would, however, be the case for the Goodness-of-Fit tests and the “Ed-
wards Family”. “Standardization” poses no problem for any of these tests.
They are, by definition, designed to return values between 0 and 1 for ρ. All
tests are relatively “easy to comprehend, intuitively meaningful and easy to ex-
plain to others” [126, p. 11] (Intelligibility): the Goodness-of-Fit tests analyze
if an observed distribution deviates too much from a hypothetical distribution
which cannot be explained by chance. The tests based on Edwards’ contri-
bution have some kind of geometrical framework, where the deviation from a
uniform distribution is tested. The nonparametric tests examine whether the
observed data show a peak-period of either 6, 5, 4, or 3 months, respectively.
The favorable properties of Sensitivity and Robustness [126] have not been
introduced before. If data are described with one statistic, the first choice is
often a measurement of the central tendency. Typical examples are the mean
and the median. While the mean is often the preferred description, one has to
be aware that it is not very robust when the data contain outliers. Likewise,
some seasonality tests could be also prone to be too sensitive when faced with
some outliers. Nevertheless, seasonality indices should also not be too robust:
If there is one extreme outlier, for example caused by an influenza epidemic, a
reasonable test should not treat this as similar to another value which might
be just slightly higher than values in any other month. Thus, a seasonality
index based purely on ranks is too robust. “Sensititivity” and “Robustness”



68 3 Measuring Seasonality

Real Data (Part A)

Wrigley Nuns Monks Union Danish Resp.

Test 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

1. Goodness-of-Fit-Tests

1.1 Chi-Square - Goodness of Fit - - + + - - + + + + + +

1.2 Kolmogorov-Smirnov-Type-Statistic - - + + + + + + + + + +

2. Edwards’ Family

2.1 Edwards’ Test - - + + + + + + + + + +

2.2 Roger’s Extension of Edwards’ Test - - + + + + + + + + + +

2.3 Pocock’s Method - - + + + - + + + + + +

2.4 Cave and Freedman - - - - - - - - + + + +

3. Non-Parametric-Tests

3.1 Hewitt’s Test 
1

+ - + + + + + + + + + +

3.2 Rogersons’ Generalization for

3.2.1 a 5-months peak 
1

+ + + + + + + + + + + +

3.2.2 a 4-months peak 
1

+ n.a. + n.a. + n.a. + n.a. + n.a. + n.a.

3.2.3 a 3-months peak 
1

+ n.a. + n.a. - n.a. + n.a. + n.a. + n.a.

3.3 David-Newell-Test - - + + + + + + + + + +

Real Data (Part B)

Anenc. Lymph. Suicides Leukem. Crohn’s

Test 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

1. Goodness-of-Fit-Tests

1.1 Chi-Square - Goodness of Fit - - + - + - + - - -

1.2 Kolmogorov-Smirnov-Type-Statistic + - + - + + + - - -

2. Edwards’ Family

2.1 Edwards’ Test + - + - + + + + - -

2.2 Roger’s Extension of Edwards’ Test + - + - + + + + - -

2.3 Pocock’s Method + - + - + + + + - -

2.4 Cave and Freedman - - - - - - - - + +

3. Non-Parametric-Tests

3.1 Hewitt’s Test 
1

- - - - - - - - - -

3.2 Rogersons’ Generalization for

3.2.1 a 5-months peak 
1

- - - - + - - - - -

3.2.2 a 4-months peak 
1

- n.a. - n.a. - n.a. - n.a. - n.a.

3.2.3 a 3-months peak 
1

- n.a. - n.a. + n.a. + n.a. - n.a.

3.3 David-Newell-Test + - + - + - + - - -

1) The actual levels of significance for the non-parametric tests are:

Levels of Significance       0.05       0.01

Hewitt    0.0483     0.0130

Rogerson 5 months peak    0.0562     0.0152

Rogerson 4 months peak    0.0470       n.a. (Max. Ranksum=42; p42=0.0267)

Rogerson 3 months peak    0.0545       n.a. (Max. Ranksum=33; p33=0.0545)

Fig. 3.7. Results for Seasonality Tests: Real Data

are excluding principles. The nonparametric tests are very robust against out-
liers. Consequently, they cannot be too sensitive for sudden, abrupt changes
in the distribution. The other two groups of tests behave exactly the other
way around.

Our analysis does not yield “the best seasonality test”. Depending on
data and the relevant research question, different tests are useful. One should
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always keep in mind that some tests are quite sensitive to sample size. Another
important feature is the distribution of the underlying data: Do we have a
relatively smooth pattern or do the data look rather erratic? Last but not
least, the test should be also aimed at the research question: Do we assume
that the underlying data have a bimodal pattern? Only in that case, the test
developed by Cave and Freedman [44] can be recommended. If it is expected
that the disease/cause of death has a rather sudden prevalence throughout
the year for a relatively short period of time, Rogerson’s generalization of
Hewitt’s test for 3, 4 or 5 months should be used. In the case of smooth data
structure across the twelve months, it is probably best to use Hewitt’s test. As
it is based on ranks, it would be probably best to use it in conjunction with
a seasonality index such as ϕ1 to give an indication of the extent of seasonal
fluctuations. Goodness-of-Fit tests and “Edwards’s Family” should only be
used if the data do not show a smooth pattern.

3.6 Evaluation of Time-Series Methods Using
Hypothetical Data

3.6.1 Introduction

Evaluating time-series methods aims at a different angle than the discussion
of indices and tests discussed above. A general applicable tool should be able
to fit a model to data with characteristics one typically observes for seasonal
mortality studies [117]. One major part is the correct estimation of the trend
component. It is more common in studies of seasonal mortality to have pure
count data available than rates of the variable of interest. Thus, a correct
estimation of the trend should be flexible enough to incorporate on the one
hand changes in the variable of interest. For example, it can be expected that
the overall trend in mortality is decreasing over time. On the other hand,
compositional changes can push the trend in the other direction. Due to the
increased survival chances, for instance, more and more old people are alive
which implies an increase in death counts in absolute terms. It should be also
obvious that it is necessary for a seasonal analysis of time-series that the sea-
sonal component is not constant over time.
Not all time-series methods discussed before have been analyzed. The “classi-
cal decompostion” has been omitted as it assumes a constant seasonal compo-
nent over time. Instead of X-11 and X-11-ARIMA the latest version, X-12, has
been used since it should yield better estimates than the previous version due
to improved outlier detection and automatic estimation of ARIMA-Models.

There are not any software package available that contain all remaining
time-series methods. Therefore, we had to rely on several packages to investi-
gate the various approaches. Table 3.2 gives an overview which software has
been used for which particular method. Besides R [170, 301], we also used
Splus, EViews and BV4 [38].
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Table 3.2. Software for Implementation of Time-Series Methods

Method Software Version

X12 EViews 4
SABL Splus 2000
STL R 1.8.1
TRAMO/SEATS EViews 4
BV4 BV4 4.1

3.6.2 Description of Data-Sets

In contrast to seasonality indices and tests we analyzed time-series methods
only with hypothetical data. Real data are used in Chapter 4.

We used seven synthetically generated data-sets with an increasing level
of complexity. The construction of these data is briefly outlined in Table 3.3.
Seasonal rates are rarely available. This is why we wanted to reflect this fact
in our hypothetical data by constructing them as count data. We started
with a simple model being constant in the trend and the seasonal component.
No residuals are put into the data (Model I). It should be expected from
any seasonal decomposition/adjustment procedure to extract the trend and
the seasonal component correctly. For any subsequent model (Models II–VII)
we introduced a third-order polynomial to obtain a monotonously increas-
ing trend. Starting with Model IV we modeled a linearly increasing seasonal
component. The last models’ seasonal components employ also a second, semi-
annual wave in the data. This should test whether the seasonal procedures are
also able to detect heat-related deaths during summer. We chose three dis-
tributions from which the data are drawn: (1) none for Models I, II, and IV;
having no residual component at all is very unlikely in reality; (2) therefore
models III, V, and VI followed a Poisson distribution; however, the Poisson
distribution is sometimes inappropriate. This can be easily seen if the require-
ment of the Poisson distribution of E(x) = µ(x) = Var(x) is not met. One
often encounters so-called overdispersion (Var(x) > E(x)). This can be typi-
cally caused by unobserved heterogeneity. As we use only time as a covariate
it can be assumed that this proxy is unable to catch all significant influences
and, as a consequence, we are faced with unmeasured factors. A pure Poisson
process is therefore the exception rather than the rule. Thus, (3) we opted to
use a Negative Binomial distribution [22, 41, 292].14

3.6.3 Results and Discussion

There are different approaches to evaluate statistical methods. We decided to
base our judgment on visual inspections of the decomposition process. While
14 While a Poisson distribution requires E(x) = Var(x) = µ, the negative bino-

mial distribution relaxes the assumption about the variance with E(x) = µ and

Var(x) = µ + µ2

θ
[389]. In our application, we set θ to 100.
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Table 3.3. Hypothetical Time-Series Data

Model Trend Seasonal Component Errors
I. constant constant —
II. monotonously —”— —

increasing
III. —”— —”— Poisson
IV. —”— increasing —
V. —”— —”— Poisson
VI. —”— increasing —”—

“heat-related mortality”
VII. —”— —”— Neg. Binom.

a theoretical statistician may criticize this, the major advantage is that one
can immediately recognize whether a specific method caught the important
characteristics of the underlying data. The following Figures 3.8–3.14 show
the results for the Models I–VII described before. For all our calculations we
did not use the default settings but tried to adapt the methods as closely as
possible to the actual data. In the case of X-12, for example, we linked the
components multiplicatively or log-additively according to our initial assem-
bling of the data. In real world applications, one does not have that back-
ground knowledge. Therefore, the results for X-12 might show better results
for our hypothetical data than for real world data. TRAMO/SEATS did not
pose any problems for the implementation, nor did SABL or the Berliner Ver-
fahren. Applying STL was less straightforward: As pointed out in the original
paper [48], there are 6 parameters to be entered into the model. Five of them
can be found automatically (e.g. number of observations), for one parameter,
however, there is no straightforward solution. Unfortunately, it is a crucial
parameter for our purposes: the smoothing parameter for the seasonal com-
ponent. We followed Cleveland et al.’s suggestion to visually inspect various
parameter values [48]. Our analysis resulted in an optimal value of approxi-
mately 7 for all our models. Lower values made the seasonal component change
too quickly, higher values resulted in seasonality being too smooth. 15

The column on the left in each figure represents the “real” data (i.e. the
input). Combining the trend (f) with the seasonal component (k) and the
residuals (p) resulted in the “real data” (a). Those “real data” were used
as input for the four different seasonal decomposition methods X-12, SABL,
STL, and TRAMO/SEATS and the Berliner Verfahren (“BV4”). Perfectly
working methods should decompose the input data in exactly the components
we used for the composition initially. We can see the outcome of these methods
in columns 2–6 in each graph for X-12 (column 2), SABL (column 3), STL
(column 4), TRAMO/SEATS (column 5) and BV4 (column 6).

15 Cleveland et al. advise to use odd numbers ≥ 7 [48]. We actually searched values
from 1 until 50 wheres the original authors looked only from 7 until 35.
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Fig. 3.8. Seasonal Decomposition of Time-Series — Model I
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Fig. 3.9. Seasonal Decomposition of Time-Series — Model II
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Fig. 3.10. Seasonal Decomposition of Time-Series — Model III
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Fig. 3.11. Seasonal Decomposition of Time-Series — Model IV
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Fig. 3.12. Seasonal Decomposition of Time-Series — Model V
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Fig. 3.13. Seasonal Decomposition of Time-Series — Model VI
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Fig. 3.14. Seasonal Decomposition of Time-Series — Model VII
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For Model I (Figure 3.8), BV4 works perfectly; the methods X-12, SABL
and STL perform almost as well as the procedure from the German Statis-
tical Office. This close fit should be expected anyway, as a constant trend
and a constant seasonal pattern represents the easiest seasonal pattern. The
implementation of TRAMO/SEATS in EViews 4.1 did not work for Models
I–III. Surprisingly the failure of this method is highly correlated with a con-
stant seasonal pattern. Due to the lack of detailed information [299], it was
impossible to determine the reason for the program’s crashes.

With the exception of TRAMO/SEATS, the four other methods performed
again very well for Model II. Solely STL’s extraction of the residuals was
slightly problematic: While no residuals should appear, STL, nevertheless ex-
tracted residuals. In addition, those residuals are highly auto-correlated, in-
dicating that important characteristics of the data are misspecified into the
irregular component. However, this is only a minor drawback: for reason of
simplicity, no numbers have been put on the scales. The mean value of the
trend is 400 and the amplitude of the seasonal component is 54. The residuals’
mean amplitude height is 0.40 and their maximum value amounts only to 1.92.
This misspecification of the irregular component is, thus, rather negligible.

Seasonal decomposition by standard methods becomes tricky when artifi-
cial noise is added to the data, as shown in Model III when the data are drawn
from a Poisson distribution (Figure 3.10). All procedures contain a somehow
wiggly trend. Only SABL seems to extract the seasonal component very well.
X-12 shows a decline in seasonality; STL’s algorithm produces a fairly shaky
result. The seasonal component of the Berliner Verfahren is the least stable.

Model IV (Figure 3.11) is the first model for which TRAMO/SEATS was
working. STL, TRAMO/SEATS and BV4 reproduced the trend almost identi-
cally to the input data. X-12’s of the underlying third-order polynomial is only
slightly worse, whereas SABL’s trend is smooth but estimated wrong.16 All
methods performed remarkably well for the extraction of the seasonal signal.

The quality of the four decomposition methods declines rapidly, starting
with Model V (Figure 3.12). Besides a monotonously increasing trend and
seasonal component we allowed the data again (Model III) to be derived from
a Poisson distribution. SABL still faces the same problems when plotting the
trend as in Model IV. But the other methods (X-12, STL, TRAMO/SEATS,
BV4) also do not show a clear signal extraction for the trend; it becomes rather
wiggly. None of the decomposition methods is able to mirror the seasonal
component exactly into the data. Although all four methods show somehow
an increase in seasonality, only STL and BV4 fit the seasonality part relatively
well. The results from TRAMO/SEATS, SABL and X-12 are not satisfactory.

So far we have only used one sine and one cosine term to model annual
fluctuations in mortality. Model VI (Figure 3.13) introduces a more elaborated
seasonal component with a sine and a cosine component of frequency of six

16 The wrong estimation is not caused by using a log-transform initially and forget-
ting about re-transforming in the end.
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months. This allows to incorporate heat-related mortality (summer excess
deaths) into our models. As Model VI is equivalent to Model V with this
exception, it should be no surprise that none of the four methods performs
better than previously.

Model VII (Figure 3.14) is the most complicated pattern we faced our
data with. In addition to a monotonously increasing trend, an annual and a
semi-annual (“heat-related mortality”) seasonal swing, we input unobserved
heterogeneity by drawing our data from a Negative Binomial Distribution
with a relatively low value of the dispersion parameter Θ.17 None of the five
methods is able to capture the trend or the seasonal component even re-
motely. All trend estimates show a wiggly upward tendency but neither X-12,
SABL, STL, TRAMO/SEATS, nor BV4 mirror the underlying third-order
polynomial correctly. Furthermore, the seasonal component is not extracted
properly by any of the standard methods: X-12, SABL, TRAMO/SEATS and
BV4 seem to be inadequate. The general approach of STL seems to work well
for seasonality. Its estimate of this component is, nevertheless, too shaky to
be declared satisfactory.

Thus, evaluating time-series methods with hypothetical data did not result
in one procedure which can unanimously be recommended. For simple data
patterns, the standard methods yield satisfactory results. If these approaches
are, however, faced with data structures one can typically encounter in de-
mography (i.e. variable trend, changing seasonality, overdispersion), none of
them extracts the entered components well enough. We rather suggest, there-
fore, the method outlined in Chapter 4 which is especially tailored for those
situations and returns the trend as well as the seasonal component almost
identical to the simulation input.

3.7 Summary

The aim of this chapter was to present and critically evaluate indices, tests and
time-series methods for seasonality. For that purpose various methods which
are used in the literature have been presented, discussed and evaluated with
hypothetical (indices, tests, time-series methods) and with empirical (indices,
tests) data.

Three indices were presented: a winter/summer ratio, a dissimilarity index
and a measurement based on entropy. Among them, the winter/summer ratio
seems to be the best choice, mainly because of its easy interpretability and
that it takes the ordering of the months into account.

Recommending a test for seasonality is less straightforward. Several tests
have been presented and discussed which can be categorized in three classes:
Goodness-of-Fit tests, the “Edwards’ family”, and nonparametric tests. Choos-
ing an appropriate test should be guided by the underlying research question
17 The lower the dispersion parameter Θ, the larger the variance of the data:

Var(Y ) = µ + µ2

Θ
[cf. 389].
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and by the nature of the data. For the “normal” application, i.e. a smooth
pattern with one peak during the year, Hewitt’s test is probably best [150].
Because this test is purely based on ranks, it should be used in conjunction
with the winter/summer-ratio to have a measurement also of the height of the
seasonal fluctuations. Generalizations of Hewitt’s test [315] can be employed if
one assumes sudden outbreaks of certain diseases throughout the year which
last only a limited amount of time. If two peaks during the year are expected
such as for Crohn’s disease, the test proposed by Cave and Freedman seems
to be appropriate [44]. If the data are rather erratic, one should use either one
of the Goodness-of-Fit tests or one from the “Edwards’ family” [e.g. 84].

Five common time-series methods (X-12, SABL, STL, TRAMO/SEATS,
BV4) have been evaluated using seven models of simulated data with in-
creasing complexity. The general outcome is not convincing: If any of those
methods are faced with complicated data, the decomposition of the trend and
the seasonal component does not return the input data. For relatively simple
simulated data, the signal extraction in all methods works well. The trend
and the season in the given data, and after the decomposition process, are
almost identical. Sudden changes in the trend does not pose any problems.
Problems arise on the one hand if the seasonal pattern is not constant over
time. Methods which are unable to handle this, can not be applied as changes
in the seasonal component over time (or age) is often the main interest in
seasonality studies. On the other hand, the evaluated time-series methods fail
to return the entered signals if the data are derived from a Poisson distri-
bution or from a Negative Binomial distribution. In practice, especially the
latter distribution appears to be the rule rather than an exception if data are
not rates but counts and if relevant factors are unmeasured. It is difficult to
point at the exact estimation problem of these standard methods as they are
quite complicated due to the filters employed and the various iterative steps
involved.
Due to these shortcomings, a new method has been developed which is able
to incorporate changes in the trend, the seasonal component and unobserved
heterogeneity. This novel approach is presented, evaluated and applied to real
data in Chapter 4 (page 83).


